CHAPTER 6 REVIEW

Chemical Bonding

SECTION 1

SHORT ANSWER Answer the following questions in the space provided.

1. _____ A chemical bond between atoms results from the attraction between the valence electrons and _____ of different atoms.
   (a) nuclei  (c) isotopes
   (b) inner electrons  (d) Lewis structures

2. _____ A covalent bond consists of
   (a) a shared electron.  (c) two different ions.
   (b) a shared electron pair.  (d) an octet of electrons.

3. _____ If two covalently bonded atoms are identical, the bond is identified as
   (a) nonpolar covalent.  (c) ionic.
   (b) polar covalent.  (d) dipolar.

4. _____ A covalent bond in which there is an unequal attraction for the shared electrons is
   (a) nonpolar.  (c) ionic.
   (b) polar.  (d) dipolar.

5. _____ Atoms with a strong attraction for electrons they share with another atom exhibit
   (a) zero electronegativity.  (c) high electronegativity.
   (b) low electronegativity.  (d) Lewis electronegativity.

6. _____ Bonds that possess between 5% and 50% ionic character are considered to be
   (a) ionic.  (c) polar covalent.
   (b) pure covalent.  (d) nonpolar covalent.

7. _____ The greater the electronegativity difference between two atoms bonded together, the greater the bond’s percentage of
   (a) ionic character.  (c) metallic character.
   (b) nonpolar character.  (d) electron sharing.

8. The electrons involved in the formation of a chemical bond are called ____________________.

9. A chemical bond that results from the electrostatic attraction between positive and ionic bond negative ions is called a(n) ____________________.
10. If electrons involved in bonding spend most of the time closer to one atom rather than the other, the bond is ______________________.

11. If a bond’s character is more than 50% ionic, then the bond is called a(n) ______________________.

12. A bond’s character is more than 50% ionic if the electronegativity difference between the two atoms is greater than ______________________.

13. Write the formula for an example of each of the following compounds:

   Answers will vary.
   ________________  a. nonpolar covalent compound
   ________________  b. polar covalent compound
   ________________  c. ionic compound

14. Describe how a covalent bond holds two atoms together.

   ____________________________________________________________________________
   ____________________________________________________________________________
   ____________________________________________________________________________

15. What property of the two atoms in a covalent bond determines whether or not the bond will be polar?

   ____________________________________________________________________________

16. How can electronegativity be used to distinguish between an ionic bond and a covalent bond?

   ____________________________________________________________________________
   ____________________________________________________________________________
   ____________________________________________________________________________
   ____________________________________________________________________________

17. Describe the electron distribution in a polar-covalent bond and its effect on the partial charges of the compound.

   ____________________________________________________________________________
   ____________________________________________________________________________
   ____________________________________________________________________________
SECTION 2

SHORT ANSWER Answer the following questions in the space provided.

1. Use the concept of potential energy to describe how a covalent bond forms between two atoms.

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

2. Name two elements that form compounds that can be exceptions to the octet rule.

________________________________________________________________________

________________________________________________________________________

3. Explain why resonance structures are used instead of Lewis structures to correctly model certain molecules.

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

4. Bond energy is related to bond length. Use the data in the tables below to arrange the bonds listed in order of increasing bond length, from shortest bond to longest.

a.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Bond energy (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H—F</td>
<td>569</td>
</tr>
<tr>
<td>H—I</td>
<td>299</td>
</tr>
<tr>
<td>H—Cl</td>
<td>432</td>
</tr>
<tr>
<td>H—Br</td>
<td>366</td>
</tr>
</tbody>
</table>
b. Bond energy (kJ/mol)

<table>
<thead>
<tr>
<th>Bond</th>
<th>Bond energy (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C—C</td>
<td>346</td>
</tr>
<tr>
<td>C=C</td>
<td>835</td>
</tr>
<tr>
<td>C≡C</td>
<td>612</td>
</tr>
</tbody>
</table>

5. Draw Lewis structures to represent each of the following formulas:

a. NH₃

b. H₂O

c. CH₄

d. C₂H₂

e. CH₂O
CHAPTER 6 REVIEW

Chemical Bonding

SECTION 3

SHORT ANSWER Answer the following questions in the space provided.

1. _____ The notation for sodium chloride, NaCl, stands for one
   (a) formula unit. (c) crystal.
   (b) molecule. (d) atom.

2. _____ In a crystal of an ionic compound, each cation is surrounded by a
   number of
   (a) molecules. (c) dipoles.
   (b) positive ions. (d) negative ions.

3. _____ Compared with the neutral atoms involved in the formation of an ionic
   compound, the crystal lattice that results is
   (a) higher in potential energy. (c) equal in potential energy.
   (b) lower in potential energy. (d) unstable.

4. _____ The lattice energy of compound A is greater in magnitude than that of
   compound B. What can be concluded from this fact?
   (a) Compound A is not an ionic compound.
   (b) It will be more difficult to break the bonds in compound A than
       those in compound B.
   (c) Compound B has larger crystals than compound A.
   (d) Compound A has larger crystals than compound B.

5. _____ The forces of attraction between molecules in a molecular compound
   are generally
   (a) stronger than the attractive forces among formula units in ionic
       bonding.
   (b) weaker than the attractive forces among formula units in ionic
       bonding.
   (c) approximately equal to the attractive forces among formula units in
       ionic bonding.
   (d) equal to zero.

6. Describe the force that holds two ions together in an ionic bond.

_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________

7. What type of energy best represents the strength of an ionic bond?

_____________________________________________________________________
_____________________________________________________________________

Original content Copyright © by Holt, Rinehart and Winston. Additions and changes to the original content are the responsibility of the instructor.
8. What types of bonds are present in an ionic compound that contains a polyatomic ion?

_______________________________________________________________
_______________________________________________________________
_______________________________________________________________
_______________________________________________________________

9. Arrange the ionic bonds in the table below in order of increasing strength from weakest to strongest.

<table>
<thead>
<tr>
<th>Ionic bond</th>
<th>Lattice energy (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>−787</td>
</tr>
<tr>
<td>CaO</td>
<td>−3384</td>
</tr>
<tr>
<td>KCl</td>
<td>−715</td>
</tr>
<tr>
<td>MgO</td>
<td>−3760</td>
</tr>
<tr>
<td>LiCl</td>
<td>−861</td>
</tr>
</tbody>
</table>

10. Draw Lewis structures for the following polyatomic ions:
   a. NH₄⁺

   b. SO₄²⁻

11. Draw the two resonance structures for the nitrite anion, NO₂⁻.
CHAPTER 6 REVIEW

Chemical Bonding

SECTION 4

SHORT ANSWER Answer the following questions in the space provided.

1. _____ In metals, the valence electrons are considered to be
   (a) attached to particular positive ions. (c) immobile.
   (b) shared by all surrounding atoms. (d) involved in covalent bonds.

2. _____ The fact that metals are malleable and ionic crystals are brittle is best explained in terms of their
   (a) chemical bonds. (c) enthalpies of vaporization.
   (b) London forces. (d) polarity.

3. _____ As light strikes the surface of a metal, the electrons in the electron sea
   (a) allow the light to pass through.
   (b) become attached to particular positive ions.
   (c) fall to lower energy levels.
   (d) absorb and re-emit the light.

4. _____ Mobile electrons in the metallic bond are responsible for
   (a) luster. (c) electrical conductivity.
   (b) thermal conductivity. (d) All of the above.

5. _____ In general, the strength of the metallic bond _____ moving from left to right on any row of the periodic table.
   (a) increases (c) remains the same
   (b) decreases (d) varies

6. _____ When a metal is drawn into a wire, the metallic bonds
   (a) break easily. (c) do not break.
   (b) break with difficulty. (d) become ionic bonds.

7. Use the concept of electron configurations to explain why the number of valence electrons in metals tends to be less than the number in most nonmetals.

_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
8. How does the behavior of electrons in metals contribute to the metal’s ability to conduct electricity and heat?

_______________________________________________________________

_______________________________________________________________

9. What is the relationship between the enthalpy of vaporization of a metal and the strength of the bonds that hold the metal together?

_______________________________________________________________

_______________________________________________________________

10. Draw two diagrams of a metallic bond. In the first diagram, draw a weak metallic bond; in the second, show a metallic bond that would be stronger. Be sure to include nuclear charge and number of electrons in your illustrations.

   a. 
   b. 

   **Note:** In the strong bond, the charge on the nucleus and the number of electrons must be greater than in the weak bond.

11. Complete the following table:

<table>
<thead>
<tr>
<th>Components</th>
<th>Metals</th>
<th>Ionic Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall charge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductive in the solid state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melting point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malleable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ductile</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 6 REVIEW

Chemical Bonding

SECTION 5

SHORT ANSWER Answer the following questions in the space provided.

1. Identify the major assumption of the VSEPR theory, which is used to predict the shape of atoms.

2. In water, two hydrogen atoms are bonded to one oxygen atom. Why isn’t water a linear molecule?

3. What orbitals combine together to form $sp^3$ hybrid orbitals around a carbon atom?

4. What two factors determine whether or not a molecule is polar?

5. Arrange the following types of attractions in order of increasing strength, with 1 being the weakest and 4 the strongest.
   - hydrogen bonding
   - ionic
   - dipole-dipole
   - London dispersion

6. How are dipole-dipole attractions, London dispersion forces, and hydrogen bonding similar?
7. Complete the following table:

<table>
<thead>
<tr>
<th>Formula</th>
<th>Lewis structure</th>
<th>Geometry</th>
<th>Polar</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{H}_2\text{S}$</td>
<td>[ \begin{array}{c} \text{S} \ \text{H} \end{array} ]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{CCl}_4$</td>
<td>[ \begin{array}{c} \text{Cl} \ \text{Cl} \ \text{Cl} \ \text{Cl} \end{array} ]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{BF}_3$</td>
<td>[ \begin{array}{c} \text{F} \ \text{B} \ \text{F} \ \text{F} \end{array} ]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{H}_2\text{O}$</td>
<td>[ \begin{array}{c} \text{O} \ \text{H} \end{array} ]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{PCl}_5$</td>
<td>[ \begin{array}{c} \text{Cl} \ \text{Cl} \ \text{Cl} \ \text{Cl} \ \text{Cl} \end{array} ]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{BeF}_2$</td>
<td>[ \begin{array}{c} \text{F} \ \text{Be} \ \text{F} \end{array} ]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{SF}_6$</td>
<td>[ \begin{array}{c} \text{F} \ \text{S} \ \text{F} \ \text{F} \ \text{F} \ \text{F} \end{array} ]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>