# Graphing Sine and Cosine

#### <u>Objective</u>:

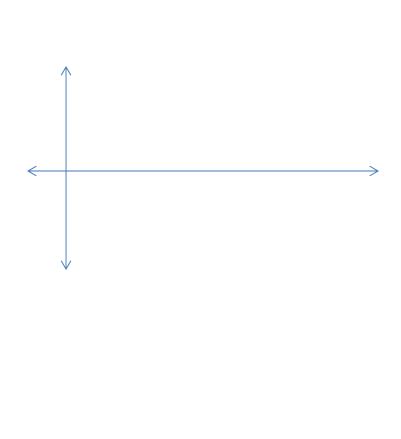
- Define the period, amplitude, and midline of the sine and cosine function
- Graph the sine and cosine functions
- Write the equation for a given sine or cosine curve

#### WARMUP - Day 1

List three things in this world that are periodic – that is they follow a repetitive cycle:

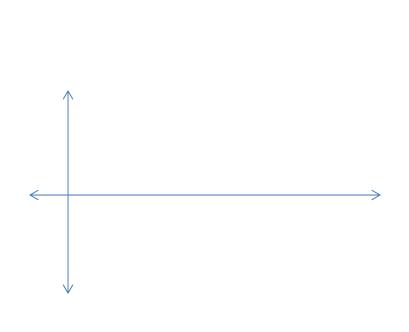
1.

2.


3.

### Building the Sine and Cosine Graphs – Connecting to the Unit Circle

Complete the tables below – then graph your results on the axis provided.


$$y = \sin(x)$$

| (x)                                   | $y = \sin(x)$ |
|---------------------------------------|---------------|
| 0                                     |               |
| $\frac{\pi}{6}$                       |               |
| $\frac{\pi}{4}$                       |               |
| $\frac{\frac{\pi}{4}}{\frac{\pi}{3}}$ |               |
| $\frac{\pi}{2}$                       |               |
| π                                     |               |
| $\frac{5\pi}{4}$                      |               |
| $\frac{3\pi}{2}$                      |               |
| $\frac{7\pi}{6}$                      |               |
| $2\pi$                                |               |

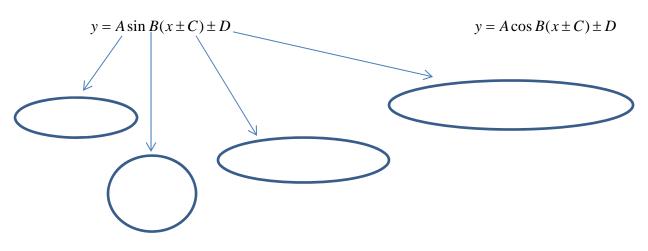


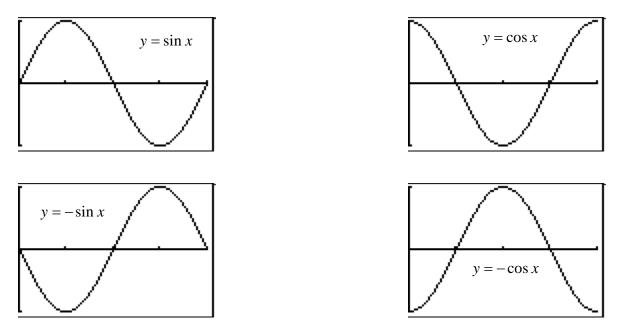
$$y = \cos(x)$$

| (x)              | $y = \cos(x)$ |
|------------------|---------------|
| ο                |               |
| $\frac{\pi}{6}$  |               |
| $\frac{\pi}{4}$  |               |
| $\frac{\pi}{3}$  |               |
| $\frac{\pi}{2}$  |               |
| π                |               |
| $\frac{5\pi}{4}$ |               |
| $\frac{3\pi}{2}$ |               |
| $\frac{7\pi}{6}$ |               |
| $2\pi$           |               |

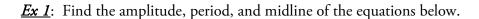


#### Discovering the Connection Between the Unit Circle and Graphing


Hopefully, you had a good experience exploring the connection between the values on the unit circle and subsequent plotting on the coordinate plane.


# Defining Key Terms

|             | Real-Life Equivalent |
|-------------|----------------------|
| Period –    |                      |
|             |                      |
|             |                      |
|             |                      |
| Amplitude – |                      |
|             |                      |
|             |                      |
|             |                      |
| Midline     |                      |
|             |                      |
|             |                      |
|             |                      |


# Extend this: What would the period of the sine/cosine functions be?

# General Forms of the Sine and Cosine Equation





### Determining Key Features from an Equation



(a)  $y = -5\sin 7x - 3$  (b)  $y = \cos \frac{3\pi}{4}(x-8) + 4$ 

Period:

Period:

Amp:

Amp:

Mid:

Mid:

$$(c) \quad y = \frac{2}{3}\cos\frac{9}{5}x$$

Period:

Amp:

Mid:

# <u>Graphing ONE CYCLE – No Horizontal Shift</u>

**<u>Ex 2</u>**: Graph  $y = 3\sin x + 1$ 

**<u>Ex 3</u>**: Graph  $y = -2\cos x - 3$ 

**<u>Ex 4</u>**: Graph  $y = -\sin \pi x + 2$ 

**<u>Ex 5</u>**: Graph  $y = 4\cos 2\pi x - 8$ 

#### WARMUP – Day 2

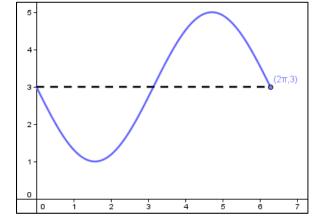
Graph 
$$y = -5\sin\frac{1}{4}x + 3$$

# Graphing ONE CYCLE with a Horizontal Shift

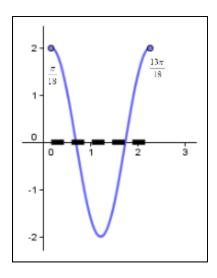
**<u>Ex 6</u>**: Graph  $y = \sin\left(x - \frac{\pi}{4}\right)$ 

**Ex 7**: Graph 
$$y = \cos\left(x + \frac{\pi}{2}\right) - 2$$

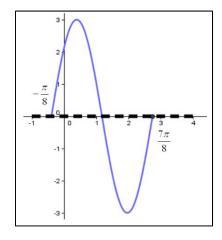
*Ex 8:* Graph  $y = -\cos 3(x - \pi) + 1$ 


**Ex 9**: Graph 
$$y = 7\sin 4\left(x + \frac{\pi}{6}\right) - 2$$

#### Writing Equations from a Graph


The most important thing you can do is identify all of the information possible from the graph's features. For example,

- How high/low are the peaks/valleys?
- How long is one cycle?
- Where is the midline?
- Where does the cycle start? End?


*Ex 10:* Write the equation for the graph shown.



*Ex 11:* Write the equation for the graph shown.



*Ex 12:* Write the equation for the graph shown.

