9.8 Systems of Linear and Quadratic Equations

Objective:

• SW solve systems of linear and quadratic equations.

You can solve systems of linear and quadratic equations graphically and algebraically. This type of system can have:

two solutions

no solution

I. Graphing

What are the solutions of the system?

$$y = x^2 - 4x + 4$$

$$y = x - 2$$

Now, let's try using graphing calculators!

$$y_1 = x^2 - 4x + 4$$

$$y_2 = x - 2$$

II. Substitution

What are the solutions of the system?

$$y = x^2 - 4x + 4$$

You try!

Find the solutions by graphing.

1.
$$y = -x^2 + 9$$

$$y = 2x + 6$$

Find the solutions by graphing calculator.

2.
$$y = 2x^2 + 1$$

$$y = -2x + 5$$

3.
$$y = x^2 + x + 3$$

 $y = -x$

Find the solutions by substitution.

4.
$$y = x^2 - 6x + 10$$

$$y = 4 - x$$

$$y = x^2 + 11x - 12$$

III. Word problem application

Since opening day, attendance at Pool A has increased steadily while attendance at Pool B first rose then fell. Equations modeling the daily attendance (y) and number of days since opening day (x) are shown below.

Pool A: y = 28x + 4

Pool B: $y = -x^2 + 39x + 64$

1. On what day(s) was the attendance the same at both pools?

2. What was the attendance?

Practice Problems:

Solve by graphing.

1.
$$y = x^2 + 2x + 1$$

 $y = x + 1$

2.
$$y = x^2 + 2x + 5$$

 $y = -2x + 1$

Solve by graphing calculator. You may have to Zoom In to see the intersection points. Remember to get back to standard axes press [zoom][6].

3.
$$y = 3x + 4$$

 $y = -x^2 + 4$

4.
$$y = x^2 - 2x - 2$$

 $y = -2x + 2$

5.
$$y = 4 - .5x$$

 $y = -x^2 + 2$

6.
$$y = -x^2 + 4x - 3$$

 $y = 1$

Solve by substitution.

9.
$$y = x^2 - 2x - 6$$

 $y = 4x + 10$

10.
$$y = 3x - 20$$

 $y = -x^2 + 34$

11.
$$y = x^2 + 5x + 5$$

 $y - x = 1$

12.
$$y = 3x^2 + 21x - 5$$

-10x + y = -1

13. The equations below model the numbers of two portable music players sold (y) and days after both players were introduced (x).

Music Player A: y = 191x - 32

Music Player B:
$$y = -x^2 + 200x + 20$$

a) On what day(s) did the company sell the same number of each player?

b) How many players of each type were sold?

14. A student says that the system $y = x^2 + 2x + 4$ and y = x + 1 has one solution. Is the student right or wrong? Explain why and show all work.