TESTING... TESTING...

TESTING FOR CONVERGENCE INCLUDING & TENDPOINTS

WHAT COULD HAPPEN?

1)The series could diverge

2)The series could converge absolutely

3)The series could converge conditionally

The n-th Term Test

PROS – Quick test, should be your first try CONS – Doesn't always work

 $\sum_{n=1}^{\infty} a_n \text{ diverges } \inf_{n \to \infty} \lim_{n \to \infty} a_n \text{ fails to exist or is different from zero.}$

If $\lim_{n \to \infty} a_n = 0$, then the series MAY converge, or it MAY diverge.

Determine the convergence or divergence of the series shown.

Ex 1:
$$\sum_{n=1}^{\infty} \frac{n^2 + 2}{n^2 + 1}$$
 Ex 2: $\sum_{n=1}^{\infty} \frac{n^2 + 3n + 1}{2n^2 + 5}$ Ex 3: $\sum_{n=1}^{\infty} \ln(\cos(n))$

THE INTEGRAL TEST

Let $\{a_n\}$ be a sequence of positive terms. Suppose that $a_n = f(n)$ where f is a continuous, positive, decreasing function of x for all $x \ge N$ (N is a positive integer). Then the series $\sum_{n=N}^{\infty} a_n$ and the integral $\int_{N}^{\infty} f(x) dx$ either both converge or both diverge.

In other words, if the integral has a value, then it must converge, and likewise, the series must then converge!

THE INTEGRAL TEST Some Examples Do the series below converge?

Ex 1:

Does the I.T. apply? Is f continuous? Is f positive? Is f decreasing? Ex 2: $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$

C&UTION!!!

The series and the integral in the Integral Test need not have the same value in the convergent case. Although the integral converges to $\frac{\pi}{4}$ in Example 2, the series might have a quite different sum!

Also, the unfortunate part of all these tests is that the tests only help determine if a series converges – not what it sums to!

THE P-SERIES TEST

Occasionally, we have come across series such as these: $\sum_{1}^{\infty} \frac{1}{n^{p}}$. Such a series is called a "p-series".

(1) Use the Integral Test to prove that $\sum_{1}^{\infty} \frac{1}{n^{p}}$ converges if p > 1.

(2) Use the Integral Test to prove that $\sum_{1}^{\infty} \frac{1}{n^p}$ diverges if p < 1.

(3) Use the Integral Test to prove that $\sum_{1}^{\infty} \frac{1}{n^{p}}$ diverges if p = 1.

Exploring Endpoint Convergence

For what values of x does the series below converge?

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$

- (1) Apply the Ratio Test to determine the radius of convergence.
- (2) Substitute the right-hand endpoint of the interval into the power series. You should get:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n-1}}{n} + \dots$$

- (3) Chart the progress of the partial sums of this series geometrically on a number line as follows: Start at 0, go forward 1. Go back ¹/₂. Go forward 1/3. Go back ¹/₄. Go forward 1/5, and so on.
- (4) Does the series converge at the right-hand endpoint? Give a convincing argument based on your geometric journey in part 3?
- (5) Does the series converge absolutely at the right-hand endpoint?

The Direct Comparison Test (Otherwise called the Limit Comparison Test)

Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ (*N* is a positive integer)

(1) If $\lim_{n \to \infty} \frac{a_n}{b_n} = c$, $0 < c < \infty$, then $\sum a_n$ and $\sum b_n$ both converge or

both diverge.

(2) If
$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0$$
 and $\sum b_n$ converges, then $\sum a_n$ converges.

(3) If
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$$
 and $\sum b_n$ diverges, then $\sum a_n$ diverges.

LCT Examples

Determine the convergence or divergence of the series shown.

Ex 1:
$$\sum_{n=0}^{\infty} \frac{1 + \sin(n)}{10^n}$$
 Case I Ex 2:
$$\sum_{n=2}^{\infty} \frac{\sqrt{n}}{n-1}$$
 Case II

LCT A Hard Example

Determine the convergence or divergence of the series shown.

Case II...again Ex 3:

$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

ALTERNATING SERIES

Here's what an alternating series looks like...

So how do we prove the convergence of such series?

THE ALTERNATING SERIES TEST

The series
$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \dots$$

converges if BOTH of the following conditions are satisfied:

1.
$$u_n \ge u_{n+1}$$
 for all $n \ge N$, for some integer N,
2. $\lim_{x \to \infty} u_n = 0$

ALTERNATING SERIES Examples

Determine the convergence or divergence of the series shown.

Ex 1:

Procedure for Determining Convergence

AP Exam MC

(No Calculator)

The radius of convergence for the power series $\sum_{n=1}^{\infty} \frac{(x-3)^{2n}}{n}$ is equal to 1. What is

the interval of convergence?

- (A) $-4 \leq x < -2$
- (B) -1 < x < 1
- (C) $-1 \le x < 1$
- (D) 2 < x < 4
- $(\mathbf{E}) \quad 2 \leq x < 4$

2002 B BC6

No Calculator

The Maclaurin series for $\ln\left(\frac{1}{1-x}\right)$ is $\sum_{n=1}^{\infty} \frac{x^n}{n}$ with interval of convergence $-1 \le x < 1$. (a) Find the Maclaurin series for $\ln\left(\frac{1}{1+3x}\right)$ and determine the interval of convergence. (b) Find the value of $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$. Give a value of p such that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converges, but $\sum_{n=1}^{\infty} \frac{1}{n^{2p}}$ diverges. Give reasons why (c) your value of p is correct. (d) Give a value of p such that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges, but $\sum_{n=1}^{\infty} \frac{1}{n^{2p}}$ converges. Give reasons why your

value of p is correct.

2002 B BC6

Answers

(a) $\ln\left(\frac{1}{1+3x}\right) = \ln\left(\frac{1}{1-(-3x)}\right)$ $= \sum_{n=1}^{\infty} \frac{(-3x)^n}{n} \text{ or } \sum_{n=1}^{\infty} (-1)^n \frac{3^n}{n} x^n$ We must have $-1 \le -3x < 1$, so interval of convergence is $-\frac{1}{3} < x \le \frac{1}{3}$. (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = \ln\left(\frac{1}{1-(-1)}\right) = \ln\left(\frac{1}{2}\right)$

 $\begin{array}{c} 2 \end{array} \left\{ \begin{array}{l} 1 \ : \ {\rm series} \\ 1 \ : \ {\rm interval} \ {\rm of} \ {\rm convergence} \end{array} \right. \end{array} \right.$

1 : answer

2002 B BC6

Answers